Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres.

نویسندگان

  • C L Franco
  • J Price
  • J L West
چکیده

A growing number of clinical trials explore the use of cell-based therapies for the treatment of disease and restoration of damaged tissue; however, limited cell survival and engraftment remains a significant challenge. As the field continues to progress, microencapsulation strategies are proving to be a valuable tool for protecting and supporting these cell therapies while preserving minimally invasive delivery. This work presents a novel, dual-photoinitiator technique for encapsulation of cells within hydrogel microspheres. A desktop vortexer was used to generate an emulsion of poly(ethylene glycol) diacrylate (PEGDA) or PEGDA-based precursor solution in mineral oil. Through an optimized combination of photoinitiators added to both the aqueous and the oil phase, rapid gelation of the suspended polymer droplets was achieved. The photoinitiator combination provided superior cross-linking consistency and greater particle yield, and required lower overall initiator concentrations compared with a single initiator system. When cells were combined with the precursor solution, these benefits translated to excellent microencapsulation yield with 60-80% viability for the tested cell types. It was further shown that the scaffold material could be modified with cell-adhesive peptides to be used as surface-seeded microcarriers, or additionally with enzymatically degradable sequences to support three-dimensional spreading, migration and long-term culture of encapsulated cells. Three cell lines relevant to neural stem cell therapies are demonstrated here, but this technology is adaptable, scalable and easy to implement with standard laboratory equipment, making it a useful tool for advancing the next generation of cell-based therapeutics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions

Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of...

متن کامل

Encapsulation of Naja –Naja Oxiana Snake venom into Poly (lactide-co-glycolide) microspheres

One small-scale double emulsion technique for incorporation of Naja- Naja oxiana venom into Poly (lactide-co-glycolide) (PLGA) microspheres were developed and optimized. The effects of high speed homogenization on the double emulsion stability, microsphere size, entrapment efficiency and In vitro release of venom were studied. A stable double emulsion was verified by homogenization method. Slow...

متن کامل

Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...

متن کامل

Preparation and Characterization of Salbutamol Sulphate Loaded Ethyl Cellulose Microspheres using Water-in-Oil-Oil Emulsion Technique

The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of a highly water/soluble drug, salbutamol sulphate by (water in oil) in oil emulsion technique using ethyl cellulose as the retardant material. Various processing and formulation parameters such as drug/polymer ratio, stirring speed, volume of processing medium were optimized to maximize the e...

متن کامل

Preparation and Characterization of Salbutamol Sulphate Loaded Ethyl Cellulose Microspheres using Water-in-Oil-Oil Emulsion Technique

The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of a highly water/soluble drug, salbutamol sulphate by (water in oil) in oil emulsion technique using ethyl cellulose as the retardant material. Various processing and formulation parameters such as drug/polymer ratio, stirring speed, volume of processing medium were optimized to maximize the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2011